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Abstract
We have studied the pressure induced B1–B2 phase transition within the Buerger mechanism.
A transition path was generated using roots of the transition matrix between the B1 and the B2
structure. The enthalpies of activation �H �= were obtained for this path for the typical
examples of NaCl and of CaO from first principle calculations. The results were compared to
�H �=-values for optimized transition paths either reported in the literature or obtained from our
own test calculations. They were very similar to the values obtained from the matrix root
method. The latter method is, however, computationally very efficient because no optimization
procedure of the transition path is necessary.

This paper is dedicated to Professor Heinz-Dieter Rudolph on the occasion of his 85th birthday.

1. Introduction

For most alkaline halides and alkaline earth chalcogenides, a
pressure induced phase transition from the rock-salt structure
(B1) to the CsCl structure (B2) can be observed. The
corresponding transition pressures range from 0.5 GPa for
rubidium bromide up to about 200 GPa for magnesium oxide.
Such conditions occur at various depths of the earth mantle.
These phase transitions are therefore of great importance in
geophysics [1] and have been investigated over a long period
of time [2–4].

In most papers on this topic, the values of the transition
pressure are determined using either experimental [5, 6] or
theoretical methods [7–10]. The path of the transition and the
corresponding energy barrier, however, have been investigated
much less frequently. As long ago as 1948, Buerger [11]
suggested a simple path via R3̄m, which is a subgroup of both
the space groups Fm3̄m of the B1 structure and Pm3̄m of the
B2 structure. Meanwhile, all possible mechanisms of the B1–
B2 transition have been investigated in great detail by Stokes
and Hatch [12], who considered all subgroups common to both
the initial and the final structure. According to molecular
dynamics simulations [13], the Buerger mechanism is one of
the most favourable transition paths.

However, usually the determination of the transition
mechanism is computationally very expensive. It requires
the identification of an optimized transition path involving
a large number of optimization steps. Here we propose

a new approximate method that is computationally much
cheaper than previous methods because no relaxation along the
transition path is necessary. This method is based on the nth
roots of the transition matrix between initial and final structure
with n being sufficiently large. The successive application
of the nth root provides a reasonable guess for the transition
path of relatively simple transition mechanisms, as we will
show in this paper, that can then be checked by more advanced
methods. For more complicated reaction mechanisms, our new
method is less appropriate, but in any case it provides an upper
bound for the transition barrier.

In detail, a phase transition can be described by a
transformation matrix T connecting the matrix A of the
primitive row vectors of the initial structure to the matrix B
of the primitive row vectors of the target structure.

B = A T. (1)

Our method (MRAM: matrix root application method) uses a
higher root R of the matrix T. A is multiplied by powers of
R in order to create intermediate structures between A and B.
In the calculations reported in the literature, the transition path
was usually divided into ten intervals [12, 14]. Following this
convention, we decided to use the tenth root R = T1/10 of T.
The method works, of course, for every nth root of T, as long
as n is not too small. An example for n �= 10 will be discussed
at the end of section 3.

This approach using the nth root is physically motivated
by the idea that the transition path connecting two structures
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should be relatively simple. Using a linear geometric
interpolation between initial and final structures, however,
leads in general to an energetically rather costly path since
typically large repulsive interactions can occur. Hence our
approach can be regarded as providing the simplest reaction
path connecting two structures that goes beyond the linear
interpolation.

All quantum chemical calculations reported in this work
were carried out using the ABINIT code [15]. ABINIT
is an accurate and well documented open source density
functional theory (DFT) code using a plane wave basis and
periodic boundary conditions. Hartwigsen, Goedecker, Hutter
pseudopotentials [16] were used in all calculations carried out
in this work. The local density approximation (LDA) was used
for most calculations unless otherwise indicated. Both the
cutoff energy and the number of k-points were chosen large
enough to allow convergence to be achieved. All quantum
chemical calculations refer to the electronic ground state. No
lattice vibrations were taken into account.

2. Calculation of the tenth root of T

The transformation matrix T from the CsCl structure (Pm3̄m)

to the rock-salt structure (Fm3̄m) in the subgroup R3̄m is
given by [17]

T =
⎛
⎜⎝

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

⎞
⎟⎠ . (2)

Three different methods for the calculation of roots of a matrix
will be given below. For our application, only real-valued
matrix elements are allowed because the coordinates obtained
by multiplications of A with powers of R must be real valued.

In this text, we denote matrices by bold capital letters
and their corresponding matrix elements by regular letters with
subscripts. Let M be a diagonal matrix which has only positive
diagonal elements Mii > 0. Its real-valued nth root is the
diagonal matrix C with the elements Ci j = δi j · n

√
Mii . A matrix

F, which has only positive eigenvalues λi > 0 and which
can be diagonalized by means of an orthogonal transformation
Λ = U−1 FU, has the nth root UCU−1 (‘method 1’). The
matrix elements of Λ are λi j = δi j · λi and those of C are
Ci j = δi j · n

√
λi

F = UΛU−1 = UCn U−1

= (UCU−1)(UCU−1) · · · (UCU−1)︸ ︷︷ ︸
n times

. (3)

This method cannot be applied to T because it has a negative
eigenvalue (λ1 = 1, λ2,3 = − 1

2 ).
‘Method 2’: analogous to the definition for operators, a

function f (H) of a matrix H can be evaluated by substituting
H instead of x into the Taylor expansion of f (x) around x = 0,
well known for, e.g., exp{H}. The radius of convergence of the
binomial series [18]

(1 + x)μ = 1 +
(

μ

1

)
x +

(
μ

2

)
x2 + · · · |x | < 1, μ ∈ R

(4)

is, however, not infinite as in the case of the exponential
function, but is unity. The norm of a real-valued symmetric
matrix like T (2) relevant for series expansions like (4) is the
maximum max(|λi|) of the absolute values of the eigenvalues
λi of H (spectral norm of a symmetric matrix) [19]. The series
expansion of T μ reads

T μ = (I + H)μ = I +
(

μ

1

)
H +

(
μ

2

)
H2 + · · · , (5)

where the identity matrix is denoted as I. Since the eigenvalues
of H = T−I determining the convergence of the expansion (5)
are λ1 = 0 and λ2,3 = −3/2, the roots of T cannot be evaluated
using (5).

The third approach (‘method 3’) starts from an estimate
R0 of an approximate tenth root matrix of T. The final tenth
root matrix R is expected to describe a smooth transition
from the initial structure to the final structure by subsequent
multiplications of the matrix of the initial structure with powers
of R. We thus expect R to deviate to only a small extent from
an identity matrix. A useful choice for R0 will therefore differ
only slightly from I.

The tenth power K = (R0)
10 = T + Δ deviates by a

matrix Δ from T. The subscript indicates the number of the
iteration. For clarity, this index will be omitted for all other
matrices and every individual matrix element.

Partial derivatives of the matrix elements of (T + Δ) with
respect to the matrix elements of R0 are evaluated numerically.
In one step, only a single matrix element Rkl of R0 is varied
slightly by an amount of rkl defining a new matrix R(kl)

0 . The
initial K = (T + Δ) is subtracted from the tenth power K(kl)

of the new matrix R(kl)
0 yielding the derivatives of all matrix

elements of Δ with respect to Rkl . We choose

rkl =
{

1
100 Rkl for |Rkl | > ε

ε for |Rkl | � ε
(6)

with ε = 10−7 and obtain the numerical derivatives as

∂(T + Δ)i j

∂ Rkl
≈

(
∂�i j

∂ Rkl

)

num

= 1

rkl

(
K (kl)

i j − Ki j

)
. (7)

The total differential of �i j is approximated by

d�i j ≈
3∑

k=1

3∑
l=1

(
∂�i j

∂ Rkl

)

num

dRkl . (8)

We calculate the values of the dRkl from the 9 × 9
inhomogeneous system of linear equations

3∑
k=1

3∑
l=1

(
∂�i j

∂ Rkl

)

num

dRkl = −�i j i, j = 1, . . . , 3 (9)

and get a new matrix R1 with the matrix elements Rkl +α dRkl

(remember that the subscript 0 is suppressed in Rkl ). A
damping factor 0 < α < 1 can be used to stabilize the
calculation, if necessary. The next iterations are carried out
starting with the new Rn until convergence is obtained. For
a real-valued initial matrix, it is guaranteed that also the root
found from ‘method 3’ is real valued.

2
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Figure 1. The matrix elements R̃(n)

i j of the powers R̃n of a certain

tenth root R̃ of the transformation matrix T. R̃ cannot be used to
describe a smooth transition from the B1 to the B2 structure as can
be seen from the irregular shape of the curves.

Matrices have, of course, more than one root. For
the tenth roots of a given 3 × 3-matrix there are usually
103 different possibilities if complex-valued matrix elements
are allowed. This can be easily seen considering the
diagonal matrix of the eigenvalues in ‘method 1’. The
roots of matrices with degenerate eigenvalues not only
show a discrete multiplicity but also depend on continuous
parameter(s) [20]. Continuous parameters occur because the
normalized eigenvectors belonging to degenerate eigenvalues
are not determined uniquely.

For some choices of the initial matrix R0 convergence
was reached within about ten iterations, whereas for other
choices sometimes hundreds of thousands of iterations were
necessary or no convergence was obtained at all. In the case
of fast convergence, the root R finally obtained did not deviate
much from the starting matrix R0 and our algorithm worked
as originally intended. Here, Rn was a better approximation
to the tenth root of T than Rn−1. For an unfavourable choice
of R0, however, it could happen that the coefficient matrix of
the (∂�i j/∂ Rkl )num in (9) became nearly singular in a certain
step n of the iteration. The new matrix Rn+1 obtained from this
nth step then deviated very much from Rn and thus also from
the initial matrix R0. Effectively, Rn+1 acted as a new initial
matrix with matrix elements completely different from those of
R0. In the next steps, the new matrices Rn+2, Rn+3, . . . usually
improved gradually, at least as long as no other near singularity
of the coefficient matrix occurred. If convergence was achieved
in such a case, a root very different from R0 was found.

In this way, several roots were calculated. For all of
them, e.g. R̃, the individual matrix elements (R̃n)i j := R̃(n)

i j

of the powers R̃n(n = 1, . . . , 10) were plotted. Two typical
examples are shown in figures 1 and 2. As can be seen easily
from figure 2, the powers of this root interpolate smoothly
between the initial and the target structure, whereas most other
roots like the example shown in figure 1 are obviously useless
for this purpose.

The matrix T has a degenerate eigenvalue. Therefore,
its roots depend on a continuous parameter, as mentioned
above. Each three of the matrix elements of the root shown

Figure 2. The matrix elements R̃(n)

i j of the powers R̃n of a different

tenth root R̃ with a smooth dependence of the matrix elements on n
and each three [(1, 1); (2, 2); (3, 3)], [(1, 2); (2, 3); (3, 1)], and
[(1, 3); (2, 1); (3, 2)] of them having nearly the same value.

in figure 2 have nearly the same value. The same holds for all
the powers of the root. The structure of the matrices in figure 2
is very near to that of R̄ (10). The primitive vectors of the
subgroup R3̄m all have identical lengths. Therefore, the only
root R̄ suitable for the transition has to consist of only three
independent matrix elements. Precise values of a, b, and c
could be, in principle, obtained by playing around with a large
number of slightly different matrices R0. Faster convergence
was achieved by a modification of ‘method 3’, which allowed
one of the nine matrix elements of R0 to be constrained to a
fixed value.

R̄ =
⎛
⎝

a b c
c a b
b c a

⎞
⎠ with

a = 0.924 911
b = 0.204 008
c = −0.128 919.

(10)

Finally, the calculation was carried out constraining the
structure of the root matrix to the symmetry of R̄ shown in
(10). Using Maple 9.5 [21], the tenth power of R̄ was evaluated
symbolically before the actual values of a, b, and c were
computed numerically in a final step. It is worth mentioning
that the result of a matrix multiplication of two matrices of the
symmetry of R̄ is again a matrix of the same symmetry.

⎛
⎝

a b c

c a b
b c a

⎞
⎠

⎛
⎝

α β γ

γ α β

β γ α

⎞
⎠ =

⎛
⎝

A B C
C A B
B C A

⎞
⎠ .

(11)
Thus, the symmetry of R̄ is conserved in its powers R̄2, R̄3, etc.
The powers of the matrix elements of R̄ look similar to those
of R̃. They are shown in figure 3. Only three curves occur,
however, instead of three groups of each three adjacent curves.

3. DFT calculations of the pressure induced phase
transitions

For both compounds (NaCl and CaO) in both structures (B1
and B2), we calculated about 20 energy values E(V ) as a
function of the cell volume V . The volume range was chosen
within V ≈ 0.7V0–1.1V0, where E0 = E(V0) denotes the

3
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Table 1. The parameters of the fits of E(V ) to Birch–Murnaghan equation (12) and of the phase transition ( ptrans, aB1 and aB2). The expected
uncertainty of ptrans obtained as explained in the text is given in parentheses. Due to the use of pseudopotentials, only the differences between
the E0 of the two structures of a compound are physically relevant.

Structure E0 (Hartree) V0 (Å
3
) B0 (kbar) B1 Compound ptrans (GPa) aB1 (Å) aB2 (Å)

NaCl (B1) −62.8855 40.855 319 4.7 NaCl 27.2(3) 4.847 3.006
NaCl (B2) −62.8753 38.378 355 4.5
CaO (B1) −52.9233 25.967 1300 4.3 CaO 59.5(3) 4.309 2.613
CaO (B2) −52.8896 22.981 1380 4.2

Figure 3. The matrix elements R̄(n)

i j of the powers R̄n of the final

matrix R̄ with only three independent matrix elements a, b, and c
given in (10).

minimum of E(V ). As equation of state we used the third
order Birch–Murnaghan equation EBM(V ) [22, 23]. B0 =
−V (∂p/∂V )T is the bulk modulus and B1 is its first pressure
derivative, both calculated at vanishing pressure p = 0.

EBM(V ) = E0 + 9

16
V0 B0

{[(
V0

V

)2/3

− 1

]3

B1

+
[(

V0

V

)2/3

− 1

]2 [
6 − 4

(
V0

V

)2/3
]}

. (12)

Birch–Murnaghan functions EBM(V ) were fitted to the energy
curves E(V ) for each of the two structures using gnuplot 4.0
for Linux [24]. The transition pressure ptrans was determined
by the slope of the common tangent of both E(V ) curves
using the analytical form of EBM(V ) (12) with the fitted
parameters for both structures. We denote the points of contact
as CB1(VB1, EB1) and CB2(VB2, EB2), respectively. The
parameters of the Birch–Murnaghan curves and the transition
pressures are listed in table 1.

p = −
(

∂ A

∂V

)

T =0

= − dE

dV
= − EB2 − EB1

VB2 − VB1
. (13)

Equation (13) holds because our calculations were carried out
at T = 0 where the entropy contribution to the free energy A
vanishes. The error of the transition pressure was estimated
using the standard deviations (1σ) of the parameters from the
fits to EBM(V ). It can be easily seen from (13) and H =
E + pV that the enthalpies HB1(CB1) and HB2(CB2) at both
contact points are equal.

Both the B1 and the B2 structure can be described by
the matrices A (B1) and B (B2) of their primitive vectors in
the common subgroup R3̄m [17] and the corresponding cell
constants aB1 and aB2. The latter ones were obtained from the
volumes of EBM(V ) in the two contact points with the common
tangent calculated as outlined above. The numerical values of
the cell constants are listed in table 1.

A =
⎛
⎜⎝

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

⎞
⎟⎠ B =

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ .

(14)
The transition path is described by the sequence

Cn = aB1cnBR̄10−n (n = 0, 1, 2, . . . , 10) c = 10

√
aB2

aB1
(15)

where n = 0 corresponds to the B1 structure and n = 10 to
the B2 structure. The reduced coordinates are constrained to
(0, 0, 0) for the metal cation and to ( 1

2 ,
1
2 , 1

2 ) for the anion.
For every structure along the transition path, the energy

Ēn(n = 0, 1, 2, . . . , 10) was computed. The corresponding
enthalpies were calculated from �Hn = �En + ptrans · �Vn ,
where �En = Ēn − Ē0 and �Vn = V̄n − V̄0. At ptrans, as
mentioned above, both the initial state (B1) and the final state
(B2) have the same enthalpy. Thus we are free to choose
either B1 or B2 as reference state. We use the B1 state and
denote EB1 as Ē0 and VB1 as V̄0. The bars over the symbols
are used in order to avoid confusion with the symbols in the
Birch–Murnaghan equation (12). The �Hn-values calculated
in this way for NaCl and CaO are shown in figures 4 and 5,
respectively.

The enthalpy profiles of the transitions obtained from
MRAM (�Hn) are very similar to those reported in the
literature for an optimized transition path (�Hrel) [17, 25].
The reference data (�Hrel) [17, 25] were obtained from a
DFT calculation using the generalized gradient approximation
(GGA) functional of Perdew, Burke and Ernzerhof (PBE) [26]
with the CRYSTAL98 code [27]. In order to test for the
influence of different functionals, we also recalculated the
enthalpies along our paths using a GGA–PBE Hamiltonian.
The profiles obtained in this way were even slightly lower in
enthalpy than those from LDA.

It should be stressed that the MRAM transition path based
on (15) always remains within the subgroup R3̄m. The same
holds for Catti’s reference values [17, 25]. Thus, the best which
can be achieved with MRAM (and also with Catti’s �Hrel) is
the optimum path of the Buerger mechanism (i.e. via R3̄m).

4



J. Phys.: Condens. Matter 21 (2009) 245404 O Potzel and G Taubmann

Figure 4. The enthalpy profiles of the B1–B2 transition of NaCl
calculated either from the MRAM method (�Hn , using LDA, this
work) or for a structure optimized path (�Hrel) reported by
Catti [25]. For �Hn , the power of the matrix R̄n is denoted by n. In
the case of �Hrel, the optimization is carried out at a constrained
rhombohedral angle α with n = 10(α − αB1)/(αB2 − αB1) [25]. No
attempt was made to obtain a smooth interpolation curve between the
individual data points. The maximum of the optimized transition
path (�Hrel) is found above the maximum of the �Hn . This can
happen only because different quantum chemical methods were used
to calculate the two curves.

Figure 5. Shown are the same enthalpies as in figure 4 for the B1–B2
transition of CaO. The reference data for �Hrel are from Catti’s
paper [17].

We will show below that MRAM does not give exactly the
optimum, but a very good approximation to the optimum path,
which has the advantage of much less computational effort.

It can be seen from figure 4 that the enthalpy of activation
�H �= found using MRAM is lower than the maximum of
the �Hrel-curve [25], although �Hrel was calculated for an
optimized transition path. Even the best estimate, however,
cannot be better than the optimum. The reference data (�Hrel)

were obtained from an all electron calculation using atomic
basis sets, whereas effective core potentials and a plane wave
basis were used for the MRAM values (�Hn). Since two
different methods were used, �H �= for the optimized path may
indeed be above the value for another path (MRAM).

The good agreement between �Hn and �Hrel thus only
shows that the values obtained from MRAM are physically

Figure 6. The enthalpy profiles of the B1–B2 transition of NaCl
calculated with the same method (LDA, plane wave basis set,
Hartwigsen, Goedecker, Hutter pseudopotentials) for the MRAM
path (�Hn) and for the optimized transition path (�Hopt). The
enthalpy of activation �H �= obtained for the optimized path is
slightly lower than for the MRAM path. In the small picture, the
three points around the maximum are shown for both enthalpy curves
together with parabolas drawn through them. The abscissa simply
enumerates the points of enthalpy along the transition path. A direct
comparison between individual (n,�Hn) and (n,�Hopt) points is,
therefore, only meaningful for the initial state (n = 0), the final state
(n = 10), and the transition state (lying at different fractional values
of n for the two paths). Minor deviations at (n = 0) and (n = 10) are
due to rounding errors.

meaningful. For a reliable test of MRAM, �H �= has to
be calculated from an optimized transition path with exactly
the same method as used for �Hn. Consider an alternative
formulation of (15).

Cn = aB1cn C̃n C̃n = BR̄10−n. (16)

The shape of the unit cell and the relative position of the ions
in it is uniquely given by C̃n for every MRAM structure (16).
The sequence of the C̃n ensures that the transition path remains
in the subgroup R3̄m. Only the volume of the unit cell can be
changed without violating this constraint.

It is worth mentioning that the variation of the shape of
the unit cell in (16) is given completely by C̃n . Thus, a single
matrix R̄ is sufficient to describe the B1–B2 transition along
the Buerger path for every compound, because the different
volumes are contained in the prefactor aB1cn.

For every point along the MRAM path, the energy was
calculated for about 10 different volumes by using cn as a free
parameter. These calculations were performed with the same
method and the same parameters which were used to compute
�Hn. In this way, energy curves E (n)(V )(n = 0, 1, 2, . . . , 10)

were obtained. A polynomial of third degree was fitted through
every E (n)(V ) curve and a volume V̄ (n) was determined such
that the slope at the point E (n)(V̄ (n)) corresponds to the precise
transition pressure ptrans. From E (n)(V̄ (n)) and V̄ (n), the
enthalpy �Hopt was calculated for every n. The values of �Hn

and of �Hopt for NaCl and for CaO are shown in figures 6
and 7, respectively. As expected, for both examples, �H �=
from �Hn is found to be slightly higher in enthalpy than the
value obtained from the optimized calculation �Hopt. The

5
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Figure 7. Shown are the same enthalpies as in figure 6 calculated for
the B1–B2 transition of CaO.

computational effort for the calculation of the �Hopt was an
order of magnitude larger than for the MRAM method.

The MRAM method creates (n − 1) reasonable
intermediate structures between the initial (I) and the final
structure (F). In this way, a good approximation for the
transition path is created, as long as the energy landscape
between I and F is not too complicated. Preliminary
calculations indicate that MRAM also works well for a B1–B2
transition within the common subgroup Pmmn [28], whereas
it fails for another, more complicated, transition path within
the common subgroup P21/m [17, 25]. Therefore, MRAM
should not be applied as a black box tool to an arbitrary type of
transition. The method is, however, very useful if a specific
transition type (e.g. the Buerger mechanism) is investigated
for a large number of similar compounds across the periodic
table, e.g. for all alkaline halides and for all alkaline earth
chalcogenides. An expensive test calculation with optimization
included is then necessary only for a single test compound in
order to check the validity of MRAM for the type of transition
under investigation.

Up to this point, all calculations were carried out using the
tenth root of T. Every other higher root (n �= 10), however,
will work as well. As a test, a sequence of intermediate
structures between B1 and B2 along the Buerger path was
created using the 100th root of T. The enthalpies of NaCl
calculated with LDA are compared to the corresponding tenth
root results in figure 8. The �H (100)

n -values look like a smooth
interpolation curve between the �Hn-points.

For large values of n = nL, the path between I and F is
sampled in very fine intervals. As n decreases, the sampling
becomes coarser. The structures created for small values of
n = nS � nL, however, still lie on the transition path given for
the limit of very large nL, because the, e.g., 17th root or any
other nS-root can be approximated very accurately by a power
of the nLth root. An accurate value of the enthalpy of activation
from an nS calculation can easily be obtained by parabolic
interpolation between the three points of largest enthalpies.

4. Conclusion

In the usual approach, enthalpies between two solid state
structures of a compound are calculated along an optimized

 Hn

 H
(100)
n

n

 H [eV]Δ Δ

Δ

NaCl

Figure 8. Shown are the same tenth root values �Hn from LDA for
NaCl as in figure 6 together with �H (100)

n -values. They were
calculated with the same method for a sequence of structures
obtained from the 100th root of T instead of its tenth root. Equation
(15) had to be adapted in an obvious way. In order to allow for a
comparison between both sequences, the step size of the abscissa of
the �H (100)

n was set to 1/10. The �H (100)
n -values interpolate

smoothly between the �Hn-values.

transition path. This procedure is computationally expensive
due to a large number of optimization steps. Our method
uses the transition matrix between the two structures and an
appropriate nth root of it. It turns out that n = 10 is sufficient
for a reliable estimation of the transition path. In this way,
a new transition path is defined leading to transition enthalpies
very similar to those obtained from the usual approach but with
much less computational effort. The computer time needed for
the calculation of the tenth root is negligible compared to the
cost of the quantum chemical calculations.

As can be expected for an interpolation scheme, MRAM is
efficient only if the enthalpy landscape along the transition path
is not too complicated. Therefore, a test calculation along an
optimized path has to be carried out for at least one compound,
before MRAM is applied to a new type of transition. If this test
has been passed successfully, a whole class of compounds can
be treated in a very efficient way.

One might argue that the square root of the transition
matrix could be sufficient for the determination of the barrier.
For a description of the complete transition path, however,
a higher root is necessary. The maximum of the enthalpy
along a transition path is not necessarily in the middle between
the two structures. Furthermore, for the B1–B2 transition,
enthalpy profiles were reported which were not within the
subgroup R3̄m and one of which even showed more than one
maximum [17, 25].
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